
Introduction to the Channel Access
Client Library

Kenneth Evans, Jr.

Kay Kasemir

2

Channel Access Reference Manual

• The place to go for more information
• Found in the EPICS web pages

– http://www.aps.anl.gov/epics/index.php
– Look under Documents

– Also under Base, then a specific version of Base

http://www.aps.anl.gov/epics/index.php

3

EPICS Overview

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

Channel Access

4

Search and Connect Procedure

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

3. TCP Connection

Let’s talk !

1. UDP Broadcast Sequence

Who has it ?

Check Check CheckCheck

2. UDP Reply

I have it !

IOC

5

Search Request

• A search request consists of a sequence of UDP packets
– Only goes to EPICS_CA_ADDR_LIST
– Starts with a small interval (30 ms), that doubles each time

– Until it gets larger than 5 s, then it stays at 5 s

– Stops after 100 packets or when it gets a response
– Never tries again until it sees a beacon anomaly or creates a new PV
– Total time is about 8 minutes to do all 100

• Servers have to do an Exist Test for each packet
• Usually connects on the first packet or the first few
• Non-existent PVs cause a lot of traffic

– Try to eliminate them

6

• A Beacon is a UDP broadcast packet sent by a Server
• When it is healthy, each Server broadcasts a UDP beacon at regular

intervals (like a heartbeat)
– EPICS_CA_BEACON_PERIOD, 15 s by default

• When it is coming up, each Server broadcasts a startup sequence of UDP
beacons

– Starts with a small interval (25 ms, 75 ms for VxWorks)
– Interval doubles each time
– Until it gets larger than 15 s, then it stays at 15 s

• Takes about 10 beacons and 40 s to get to steady state

• Clients monitor the beacons
– Determine connection status, whether to reissue searches

Beacons

7

Virtual Circuit Disconnect

• 3.13 and early 3.14

– Hang-up message or no response from server for 30 sec.
– If not a hang-up, then client sends “Are you there” query
– If no response for 5 sec, TCP connection is closed

– MEDM screens go white

– Clients reissue search requests
• 3.14.5 and later

– Hang-up message from server
– TCP connection is closed

– MEDM screens go white

– Clients reissue search requests

8

Virtual Circuit Unresponsive

• 3.14.5 and later

– No response from server for 30 sec.
– Client then sends “Are you there” query
– If no response for 5 sec, TCP connection is not closed

• For several hours, at least

– MEDM screens go white
– Clients do not reissue search requests

• Helps with network storms

– Clients that do not call ca_poll frequently get a virtual circuit disconnect
even though the server may be OK
• Clients written for 3.13 but using 3.14 may have a problem
• May be changed in future versions

9

Important Environment Variables

• EPICS_CA_ADDR_LIST
– Determines where to search
– Is a list (separated by spaces)

• “123.45.1.255 123.45.2.14 123.45.2.108”

– Default is broadcast addresses of all interfaces on the host
• Works when servers are on same subnet as Clients

– Broadcast address
• Goes to all servers on a subnet
• Example: 123.45.1.255
• Use ifconfig –a on UNIX to find it (or ask an administrator)

• EPICS_CA_AUTO_ADDR_LIST
– YES: Include default addresses above in searches
– NO: Do not search on default addresses

– If you set EPICS_CA_ADDR_LIST, usually set this to NO

10

EPICS_CA_ADDR_LIST

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

Subnet 2Subnet 1

Specific

123.45.2.108

Broadcast

123.45.1.255

Not Included

11

Other Environment Variables

• CA Client
EPICS_CA_ADDR_LIST

EPICS_CA_AUTO_ADDR_LIST

EPICS_CA_CONN_TMO

EPICS_CA_BEACON_PERIOD

EPICS_CA_REPEATER_PORT

EPICS_CA_SERVER_PORT

EPICS_CA_MAX_ARRAY_BYTES

EPICS_TS_MIN_WEST

• See the Channel Access Reference Manual for more information

• CA Server
EPICS_CAS_SERVER_PORT

EPICS_CAS_AUTO_BEACON_ADDR_LIST

EPICS_CAS_BEACON_ADDR_LIST

EPICS_CAS_BEACON_PERIOD

EPICS_CAS_BEACON_PORT

EPICS_CAS_INTF_ADDR_LIST

EPICS_CAS_IGNORE_ADDR_LIST

12

Channel Access

• The main CA client interface is the "C" library that comes with EPICS base
– Internally uses C++, but API is pure C.

• Almost all other CA client interfaces use that C library
– Exception: New pure Java JAC

13

Basic Procedure for a Channel Access Client

• Initialize Channel Access
– ca_task_initialize or ca_context_create

• Search

– ca_search_and_connect or ca_create_channel
• Do get or put

– ca_get or ca_put
• Monitor

– ca_add_event or ca_create_subscription
• Give Channel Access a chance to work

– ca_poll, ca_pend_io, ca_pend_event
• Clear a channel

– ca_clear_channel
• Close Channel Access

– ca_task_exit or ca_context_destroy

14

makeBaseApp.pl

• Includes a template for basic CA client in C:
– Start with this:

makeBaseApp.pl -t caClient cacApp
make

– Result:
bin/linux-x86/caExample <some PV>
bin/linux-x86/caMonitor <file with PV list>

– Then read the sources, compare with the reference manual, and edit/extend to suit
your needs.

15

makeBaseApp's caExample.c

• Minimal CA client program.
– Fixed timeout, waits until data arrives.
– Requests everything as 'DBR_DOUBLE'.

• … which results in values of C-type 'double'.
• See db_access.h header file for all the DBR_… constants and the

resulting C types or structures.
• In addition to the basic DBR_<type> requests, it is possible to request

packaged attributes like DBR_CTRL_<type> to get { value, units, limits,
…} in one request.

16

Excerpt from db_access.h

/* values returned for each field type
&
 * DBR_DOUBLE returns a double precision floating point number
&
 * DBR_CTRL_DOUBLE returns a control double structure (dbr_ctrl_double)
 */
&
/* structure for a control double field */
struct dbr_ctrl_double{
 dbr_short_t status; /* status of value */
 dbr_short_t severity; /* severity of alarm */
 dbr_short_t precision; /* number of decimal places */
 dbr_short_t RISC_pad0; /* RISC alignment */
 char units[MAX_UNITS_SIZE]; /* units of value */
 dbr_double_t upper_disp_limit; /* upper limit of graph */
 dbr_double_t lower_disp_limit; /* lower limit of graph */
 dbr_double_t upper_alarm_limit;
 dbr_double_t upper_warning_limit;
 dbr_double_t lower_warning_limit;
 dbr_double_t lower_alarm_limit;
 dbr_double_t upper_ctrl_limit; /* upper control limit */
 dbr_double_t lower_ctrl_limit; /* lower control limit */
 dbr_double_t value; /* current value */
};

17

makeBaseApp's caMonitor.c

• Better CA client program.
– Registers callbacks to get notified when connected ot disconnected
– Subscribes to value updates instead of waiting.
– … but still uses the same data type (DBR_STRING) for everything.

18

Ideal CA client?

• Use callbacks for everything
– no idle 'wait', no fixed time outs.

• Upon connection, check the channel's native type (int, double, string, …)
– to limit the type conversion burden on the IOC.

• … request the matching DBR_CTRL_<type> once
– to get the full channel detail (units, limits, …).

• … and then subscribe to DBR_TIME_<type> to get updates of only time/status/value
– so now we always stay informed, yet limit the network traffic.
– Only subscribe once, not with each connection, because CA client library will automatically re-

activate subscriptions!
• This is what EDM, archiver, … do.

– Quirk: They don't learn about online changes of channel limits, units, ….
Doing that via a subscription means more network traffic, and CA doesn't send designated events for
'meta information changed'.

19

Side Note: SNL just to get CAC help

• This piece of SNL handles all the connection management and data type handling:
� double value;
assign value to "fred";
monitor value;

• Extend into a basic 'camonitor':
� evflag changed;
sync value changed;

ss monitor_pv
{

state check
{
 when (efTestAndClear(changed))
 {
 printf("Value is now %g\n", value);
 } state check
}

}

20

Quick Hacks, Scripts

• In many cases, one can get by just fine by invoking the command-line 'caget'
from within bash/perl/python/php.

• Especially if you only need to read/write one value of a PV, not a subscription!
• There are more elaborate CAC bindings available for perl/python/php

– But that means you have to find, build and later maintain these!
– A basic p* script is portable, but you'd have to install the CAC-for-p* binding

separately for Linux, Win32, MacOS…

21

Perl Example

use English;

Get the current value of a PV
Argumment: PV name
Result: current value
sub caget($)
{
 my ($pv) = @ARG;
 open(F, "caget -t $pv |") or die "Cannot run 'caget'\n";
 $result=<F>;
 close(F);
 chomp($result);
 return $result;
}

Do stuff with PVs
$fred = caget("fred");
$jane = caget("jane");
$sum = $fred + $jane;
printf("Sum: %g\n", $sum);

22

Matlab 'MCA' Extension (Works with Octave as well)

• Same setup & maintenance issue as for p/p/p!
– … but may be worth it, since Matlab adds tremendous number crunching and graphing.

• Initial setup
– Get MCA sources (see links on APS EPICS web)
– Read the README, spend quality time with MEX.

• Assume that's done by somebody else
– You are in the SNS control room
– 'caget' from EPICS base works
– Matlab works (try "matlab -nojvm -nodesktop")

• Do this once:
cd $EPICS_EXTENSIONS/src/mca
source setup.matlab

– … and from now on, Matlab should include MCA support

23

MCA Notes

• Basically, it's a chain of
– pv = mcaopen('some_pv_name');
– value = mcaget(pv);
– mcaput(pv, new_value);
– mcaclose(pv);

• Your pv is 'connected' from ..open to ..close
– When getting more than one sample, staying connected is much more efficient than

repeated calls to 'caget'.
• Try 'mca<tab>' command-line completion to get a list of all the mca… commands
• Run 'help mcaopen' etc. to get help

24

Matlab/MCA Examples

25

MCA Value Subscription

26

Java

• There is actually a JNI and a pure Java binding.
– Only difference in initialization, then same API.
– Usage very much like C interface, "real programming" as opposed to Matlab,

but in a more forgiving Java VM.
• See Docs/Java CA example.

27

Acknowledgements

• Channel Access on every level in detail:
– Jeff Hill (LANL)

• makeBaseApp.pl
– Ralph Lange (BESSY) and others

• MCA
– Andrei Terebilo (SLAC) is the original author,
– Carl Lionberger maintained it for a while (then SNS)

• Java CA
– Eric Boucher is the original author (then APS),
– Matej Sekoranja maintains it;

he added the pure java version (Cosylab)

